Buffer Overflow 101

A Tutorial and Workshop by Miles Crabill



Hlip the Script

Are you comfortable with C7

ave you seen hex before”?
Do you know what a stack is”

Have you heard about “x86" or “assembly”™?



Super Basic C

e loops e pointers

e functions * Strings

* SCOpINg e strcpy

* argc & argv * doesn’t check
memory

* asCll boundaries



Hexadecimal Primer

Base 16 pretend you have sixteen fingers

Let's count up to 30 In hex!

0123456789ABCDEF1011 1213 14 15
16171819 1A 1B 1C ...

When you see someone say 0x1B they are
displaying a number in hex

* Similarly Ob denotes binary



e LIFO lastin, first out data

e Operations:

What Is a stack”?

structure

* push

* POP

* |[SEmpty




x86 Stack Implementation

OXFFFFFFFFE

* highest memory address
The stack grows downwards
* high to low address

stack pointer

* register that points to the
current top of the stack

stack base pointer

e reqister that points to a fixed
location stores the original
value of the stack pointer

OXEEfEffff

kernel virtual memory memory
(code, data, heap, stack) invisible to
user code
user stack

(created at runtime) o ,. N
wesp (stack pointer)

memory mapped region for
shared libraries

run-time heap
(created at runtime by malloc)

read/write segment
(.data, .bss)

loaded from the
read-only segment executable file
N (.init, .text, .rodata)

0x08043000 ’

T s




* The top image shows the
contents of an individual stack
frame

 Notice that the saved ebp

base pointer points to the

start of the stack frame wee o | DR oM™
I

26

RETURN LINKTO N-2 25

STACK

e Notice that local variables nacTvE N|_q
are at the bottom remember ——
that the stack grows e N s
S e
downwardS! 15 =17
® The bO’[’[OI’ﬂ image ShOWS hOW AVAILABLE4£
. STACK 9
stack frames work with SPACE

function calls

NDNWhrhoo N ®

o‘




L ittle Endian Trickiness

* [n the x86 architecture, memory is stored in little endian format.

In little endian, you store the least significant byte in the smallest
address.

* This means that the order of the bytes in memory is reversed.

* This is Important because when you enter memory addresses

iInto your code you will need to account for the change in
endianness.

 Example:
e \xef\xbe\xad\xde becomes \xde\xad\xbe\xef
e cfbeadde becomes deadbeef

* Note: each byte is in hex, that's why there are the \x’s



pbuf.c demo
follow along:

ssh studentl<censored 1p address>

the password 1s student

Make a folder for your team please!



Stack Smashing

 |t's all about overwriting the return address

 \We don't want to return to where the program wants to return to, we
want to return to our shellcode!

« Components of the buffer we want to send
« NOP sled

* a series of “no operation” commands in x86, the opcode for this
IS Ox90 90 Iin hex

 Shellcode
* the payload of the exploit
e Return address

e to overwrite the return address of the vulnerable function with an
address somewhere in our NOP sled



Understanding Assembly

0x080484e2 <+0>:
0x080484e3 <+1>:
0x080484eb <+3>:
0x080484e8 <+06>:

push
mov
and
sub

ebp

ebp, esp

esp, Oxftfff£f££f0
esp, 0x220

Note: to get the output | have, you will need to run set disassembly-flavor

intel in gdb

The hex values on the left side are the addresses of each of the instructions
The above is the assembly instructions from the main function ot stack400 the

program we will be exploiting.

This is the prolog assembly function, saving the stack frame status

The first line pushes the base pointer to the stack

The second line sets the base pointer to the function’s stack frame stack pointer
The third line aligns the stack with the next lowest 16 byte boundary

The fourth line makes room for local variables by subtracting from the stack

pointer



Understanding More Assembly

0x08048537 <+85>: call 0x80484bd <bof>
0x0804853c <+90>: mov DWORD PTR esp, 0x80485ea

e Here | have disassembled main in stack400

e \We see a call to bof - the address 0x80484bd is the location
of the bof function

* Again, the memory addresses on the left are the locations of
these instructions within main

 When we go into a function, its return address will typically be
the instruction after it in the function that called it

e SO we can assume that the return address of bof will be
0x0804853¢c, the instruction after the function call



'sploiting

 We're going to connect to a machine | have set up to be exploited

« Run ssh student@<censored ip address> Inaterminal on
OSX, type ‘Terminal’ into Spotlight

 The password is ‘student’

 Make a folder for your group, and make your badfile in there!
This is essential to avoid overwriting other groups’ files.

 The programs can be run by typing ‘buf’ or ‘stack’ or ‘stack400’
Into your shell

e The source codeisinthe /usr/local/bin/stack-files
directory

* To navigate to this directory, type cd /usr/local/bin/
stack-files Into your shell



stack400.c workalong

ssh student@<censored 1p address>

the password 1s student

Make a folder for your team please!



Runtime Buffer Overflow Prevention

e Canary value stored after local variables

* Randomized value that is put after local variables on the
stack and checked before the function return

* Boundary Checking

* Ensure that buffers are only written to their limits
* Copy and store return addresses on separate stack
* Library wrappers

* Library patches

* Non-executable, randomized memory

* Limits ability to write certain functions nesting, etc



Resources & References

- Smashing The Stack For Fun And Profit

- Purdue Buffer Overflow Lecture

- Wikipedia Page on Stack Based Buffer Overflows

- Buffer Overflow Attacks and their Countermeasures @ LinuxJournal

- Wikibooks x86 dissasembly and the stack

- Naked Security Heartbleed explanation

- Chat Wars AOL intentionally put a buffer overflow in AIM to stop Microsoft from using their protocol!

- Wired Conficker article

- Wikipedia Stack Smashing

- Shell Storm Shellcode Database

- buf.c taken from Syracuse University

- Here is buf.c, the introductory file.

- Here is the stack.c file.


http://insecure.org/stf/smashstack.html
https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture21.pdf
https://en.wikipedia.org/wiki/Buffer_overflow#Stack-based_exploitation
http://www.linuxjournal.com/article/6701
https://en.wikibooks.org/wiki/X86_Disassembly/The_Stack
http://nakedsecurity.sophos.com/2014/04/08/anatomy-of-a-data-leak-bug-openssl-heartbleed/
https://nplusonemag.com/issue-19/essays/chat-wars/
http://www.wired.com/2009/03/conficker-how-a/
https://en.wikipedia.org/wiki/Stack_smashing
http://shell-storm.org/shellcode/
http://www.cis.syr.edu/~wedu/seed/Labs/Vulnerability/Buffer_Overflow/
http://milescrabill.com/files/buf.c
http://milescrabill.com/files/stack.c

