
Buffer Overflow 101
A Tutorial and Workshop by Miles Crabill

Flip the Script

• Are you comfortable with C?

• Have you seen hex before?

• Do you know what a stack is?

• Have you heard about “x86” or “assembly”?

Super Basic C
• loops

• functions

• scoping

• argc & argv

• ascii

• pointers

• strings

• strcpy

• doesn’t check
memory
boundaries

Hexadecimal Primer
• Base 16 pretend you have sixteen fingers

• Let’s count up to 30 in hex!

• 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15
16 17 18 19 1A 1B 1C …

• When you see someone say 0x1B they are
displaying a number in hex

• Similarly 0b denotes binary

What is a stack?
• LIFO last in, first out data

structure

• Operations:

• push

• pop

• isEmpty

x86 Stack Implementation
• 0xFFFFFFFF

• highest memory address
• The stack grows downwards

• high to low address
• stack pointer

• register that points to the
current top of the stack

• stack base pointer
• register that points to a fixed

location stores the original
value of the stack pointer

Nitty Gritty x86 Stack
• The top image shows the

contents of an individual stack
frame

• Notice that the saved ebp
base pointer points to the
start of the stack frame

• Notice that local variables
are at the bottom remember
that the stack grows
downwards!

• The bottom image shows how
stack frames work with
function calls

Little Endian Trickiness
• In the x86 architecture, memory is stored in little endian format.

In little endian, you store the least significant byte in the smallest
address.
• This means that the order of the bytes in memory is reversed.

• This is important because when you enter memory addresses
into your code you will need to account for the change in
endianness.

• Example:
• \xef\xbe\xad\xde becomes \xde\xad\xbe\xef

• efbeadde becomes deadbeef
• Note: each byte is in hex, that’s why there are the \x’s

buf.c demo
follow along:

ssh student@<censored_ip_address>
 the password is student

Make a folder for your team please!

Stack Smashing
• It’s all about overwriting the return address

• We don’t want to return to where the program wants to return to, we
want to return to our shellcode!

• Components of the buffer we want to send
• NOP sled

• a series of “no operation” commands in x86, the opcode for this
is 0x90 90 in hex

• Shellcode
• the payload of the exploit

• Return address
• to overwrite the return address of the vulnerable function with an

address somewhere in our NOP sled

Understanding Assembly
 0x080484e2 <+0>: push ebp
 0x080484e3 <+1>: mov ebp,esp
 0x080484e5 <+3>: and esp,0xfffffff0
 0x080484e8 <+6>: sub esp,0x220
!

• Note: to get the output I have, you will need to run set disassembly-flavor
intel in gdb

• The hex values on the left side are the addresses of each of the instructions
• The above is the assembly instructions from the main function of stack400 the

program we will be exploiting.
• This is the prolog assembly function, saving the stack frame status
• The first line pushes the base pointer to the stack
• The second line sets the base pointer to the function’s stack frame stack pointer
• The third line aligns the stack with the next lowest 16 byte boundary
• The fourth line makes room for local variables by subtracting from the stack

pointer

Understanding More Assembly

 0x08048537 <+85>: call 0x80484bd <bof>

 0x0804853c <+90>: mov DWORD PTR esp,0x80485ea

!
• Here I have disassembled main in stack400

• We see a call to bof - the address 0x80484bd is the location
of the bof function

• Again, the memory addresses on the left are the locations of
these instructions within main

• When we go into a function, its return address will typically be
the instruction after it in the function that called it

• So we can assume that the return address of bof will be
0x0804853c, the instruction after the function call

‘sploiting
• We’re going to connect to a machine I have set up to be exploited
• Run ssh student@<censored_ip_address> in a terminal on

OSX, type ‘Terminal’ into Spotlight
• The password is ‘student’
• Make a folder for your group, and make your badfile in there!

This is essential to avoid overwriting other groups’ files.
• The programs can be run by typing ‘buf’ or ‘stack’ or ‘stack400’

into your shell
• The source code is in the /usr/local/bin/stack-files

directory
• To navigate to this directory, type cd /usr/local/bin/
stack-files into your shell

stack400.c workalong
ssh student@<censored_ip_address>

 the password is student

Make a folder for your team please!

• Canary value stored after local variables
• Randomized value that is put after local variables on the

stack and checked before the function return
• Boundary Checking

• Ensure that buffers are only written to their limits
• Copy and store return addresses on separate stack
• Library wrappers
• Library patches
• Non-executable, randomized memory

• Limits ability to write certain functions nesting, etc

Runtime Buffer Overflow Prevention

Resources & References
• - Smashing The Stack For Fun And Profit

• - Purdue Buffer Overflow Lecture

• - Wikipedia Page on Stack Based Buffer Overflows

• - Buffer Overflow Attacks and their Countermeasures @ LinuxJournal

• - Wikibooks x86 dissasembly and the stack

• - Naked Security Heartbleed explanation

• - Chat Wars AOL intentionally put a buffer overflow in AIM to stop Microsoft from using their protocol!

• - Wired Conficker article

• - Wikipedia Stack Smashing

• - Shell Storm Shellcode Database

• - buf.c taken from Syracuse University

• - Here is buf.c, the introductory file.

• - Here is the stack.c file.

http://insecure.org/stf/smashstack.html
https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture21.pdf
https://en.wikipedia.org/wiki/Buffer_overflow#Stack-based_exploitation
http://www.linuxjournal.com/article/6701
https://en.wikibooks.org/wiki/X86_Disassembly/The_Stack
http://nakedsecurity.sophos.com/2014/04/08/anatomy-of-a-data-leak-bug-openssl-heartbleed/
https://nplusonemag.com/issue-19/essays/chat-wars/
http://www.wired.com/2009/03/conficker-how-a/
https://en.wikipedia.org/wiki/Stack_smashing
http://shell-storm.org/shellcode/
http://www.cis.syr.edu/~wedu/seed/Labs/Vulnerability/Buffer_Overflow/
http://milescrabill.com/files/buf.c
http://milescrabill.com/files/stack.c

